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Abstract-Thermal wave propagation in an infinite solid medium which surrounds an infinitely long 
cylindrical surface is considered. This surface transfers a prescribed and time-dependent heat flux to the 
solid medium. The non-stationary heat conduction problem is studied by assuming a non-vanishing value 
of the thermal relaxation time for the solid medium, i.e. by employing the hyperbolic heat conduction 
equation. An analytical expression of the temperature field in the solid is determined. Examples are 
provided for heat fluxes which vary with time as a square wave pulse or as a triangular wave pulse. 
Comparisons with the solutions obtained for parabolic heat conduction are performed. Copyright 0 1996 

Elsevier Science Ltd. 

INTRODUCTION 

Ever since Maxwell’s paper [l], it is widely accepted 
in the literature that only for stationary or weekly non- 
stationary temperature fields the constitutive equation 
which relates the heat flux density vector q(x, t) to the 
temperature gradient Vi”(x, t) is given by Fourier’s 
law 

q(x, t) = -kVT(x, t). (1) 

If the time scale of local temperature variations is very 
small, equation (1) is replaced by 

q(x, t+z) = -kVz-(x, t) (2) 

where r, called thermal relaxation time, is a ther- 
modynamic property of the material where heat con- 
duction occurs. Unlike Fourier’s law, the constitutive 
equation (2) is non-local in time. However, the local 
character of the heat conduction theory is usually 
restored by a truncation of equation (2) to the first 
order in r, namely 

aa t) qw+-g-- = -kVT(x, t). (3) 

If heat generation is present within the material, the 
local energy balance can be expressed as 

k aT(x, t) -v * q(x, t) + qg(x. 4 = ; -$- (4) 

where q.Jx, t) is the power generated per unit volume 
and c1 is the thermal diffusivity. Equations (3) and (4) 
yield the hyperbolic heat conduction equation, i.e. 

kV* Z-(x, 0 +q,(x, t) + 7 
t) aq,(x, 

at 

k aT(x, t) 
=- at+’ 

a* T(x, t) 
(5) a [ I at' 

The constitutive equation (3) predicts a finite speed 
for the propagation of thermal signals with a value 
J(a/r). A review of the physical bases of hyperbolic 
heat conduction can be found in [2], while more recent 
theoretical and experimental results obtained in this 
field are reviewed by ijzisik and Tzou [3]. 

Most of the experimental studies on the phenom- 
enon of finite-speed propagation of thermal signals, 
often called second sound, have been performed at low 
temperatures. For instance, in [4] this phenomenon 
has been observed in NaF at x 10 K, while in [5] it 
has been shown that the speed of second sound in Bi 
at x 3.4 K is 780 m s-‘. On the other hand, Kaminski 
[6] has performed measurements of the thermal relax- 
ation time at room temperature on some non-homo- 
geneous materials such as sand or glass ballotini. 
Kaminski has shown that the values of the thermal 
relaxation time for these materials lie in the range 10 s 
< 7 < 50 s. Further experimental validations of the 
hyperbolic heat conduction equation could be based 
on the comparison between solutions of the equation 
and measurements of the temperature field performed 
by suitable experimental apparatuses. Then, values of 
the thermal relaxation time or of the speed of propa- 
gation could be obtained by a parameter estimation 
method. 

In the literature, many solutions of the hyperbolic 
heat conduction equation have been determined. 
Most of these solutions refer to propagation of ther- 
mal waves either in semi-infinite solid media bounded 
by a plane surface or in infinite plane slabs. For 
instance, Baumeister and Hamill [7], Vick and ozisik 
[8], Glass et al. [9], Orlande and ijzisik [lo] have 
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NOMENCLATURE 

LI dimensionless function off/ and < 
defined by equation (26) 

C,(S). C,?(S) integration constants employed 
in equation (I 8) 

f dimensionless function of ‘7 and < 
defined by equation (24) 

F(J) =~(t):q,,. dimensionless function of 
time 

Y dimensionless function of < defined by 
equation (I 3) 

H Heaviside’s unit step function 
i = d’ ~ 1, imaginary unit 
Im imaginary part of a complex number 
I,, modified Bessel function of first kind 

and order M 

J>, Bessel function of first kind and order 
I? 

li thermal conductivity 
K modified Bessel function of second 

kind and order II 
L Laplace transform operator 
I? integer number 
q(t) heat flux which crosses the surface 

I’ = r,, 

9 heat flux density vector 

% power generated per unit volume 

Yn constant heat flux 
r radial coordinate 
R radius of the semicircular 

path rK 
Re real part of a complex number 
r0 radius of the heating surface 
.s Laplace transformed variable 
f time 
T temperature 
Trl initial temperature 
u = Jy, integration variable 
X position vector 

1’ integration variable 
1’0 Bessel function of second kind and 

order n 
z complex variable. 

Greek symbols 
Y thermal diffusivity 
%, 

’ 
constant employed in the inversion 
formula (28) 

r/?. r,,. r>~ paths represented in Fig. I 

(r Dirac’s delta distribution 
l:,. i:: radiuses of the small circles T,, and 

T.? 
‘I = r/v,,, dimensionless radial coordinate 
:J dimensionless temperature defined by 

equation (9) 
r. integration variable 

= cctlr.;, dimensionless time 
<ii dimensionless value of the pulse 

switching-on time 
<I dimensionless value of the pulse 

switching-off time 
E = q/r;, dimensionless parameter 

I’ dimensionless function defined by 
equation (30) 

Z closed path represented in Fig. 1 
T thermal relaxation time 

‘P dimensionless function of < defined by 
equation (35) 

$Nf) = F(riQr). dimensionless function of 

X dimensionless function of < employed 
in equation (33) 

11) dimensionless function of j’. t\ and < 
defined by equation (32). 

Superscripts 
Laplace transformed function. 

found solutions of the hyperbolic heat conduction 
equation in a semi-infinite solid bounded by a plane 
surface, with different boundary conditions. In par- 
ticular, in ref. [7] a step change of the temperature of 
the boundary surface is considered, while in refs (8 
lo] time-dependent heat fluxes are prescribed at this 
surface. On the other hand, &sik and Vick [1 I], 
Frankel et (11. (121 and Hector et al. [l3] study hyper- 
bolic propagation of thermal signals in an infinite 
plane slab. In [I 11, an internal heat generation is con- 
sidered within the slab, while the surfaces are sup- 
posed to be insulated. In [12] and [l3]. no heat gen- 
eration occurs within the slab and one of the surfaces 
is insulated. On the other surface, a time-dependent 
heat flux is prescribed, which is either uniform [12], 
or non-uniform and axisymmetric [ 131. 

The aim of this paper is to study hyperbolic heat 
conduction in an infinite solid medium bounded 
internally by a circular cylindrical surface with radius 
r,,. with no heat generation in the solid and a pre- 
scribed time-dependent heat flux on the boundary sur- 
face. The choice of this system for the study of thermal 
wave propagation is motivated by the lack of serious 
difficulties in the setup of an experimental apparatus 
which reproduces it. Indeed, the cylindrical geometry 
of the heating surface is infinite only in one direction 
and can be practically implemented by a sufficiently 
long cylindrical electric resistor. Provided that the heat 
capacity of the resistor is very small, any heat flux 
signal can be experimentally reproduced by a suitable 
non-stationary electric current. 

The paper is organized as follows. The system under 
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examination is described and the governing equations 
are written. Then, an analytical solution of the prob- 
lem is determined for an arbitrary time-dependent 

Wr?,O) = 0 (11) 

heat flux at the boundary surface. Finally, examples al9 
are provided in which the general solution is applied drl ‘I=, 

= _$(;)_3d$$, 5 > 0 (12) 

to heat fluxes which vary with time like a square wave 
or a triangular wave pulse. Comparisons are made in where 4(t) = F(rg</a). Let function g(4) be defined 
these cases between parabolic and hyperbolic heat 
conduction. 

MATHEMATICAL MODEL 

In this section, the hyperbolic heat conduction 
equation for the axisymmetric problem under exam 
is presented together with its initial and boundary 
conditions. Then, both the equation and the initial 
and boundary conditions are written in the Laplace 
transform domain. 

Let us consider an infinitely long cylindrical surface 
with radius r. which internally bounds a homogeneous 
solid which occupies the region r0 < r < + co. It will 
be assumed that the thermal conductivity k, the ther- 
mal diffusivity c( and the thermal relaxation time r of 
the solid can be treated as constants. No heat gen- 
eration is supposed to be present within the solid. so 
that q&x, t) = 0. Moreover, at the initial time t = 0 
the temperature field within the solid is uniform with 
a value T,, and stationary, while for t > 0 a uniform 
and time-dependent heat flux q(t) = q&(t) crosses 
radially the surface Y = ro, where F(t) is a dimen- 
sionless function of time. Therefore, the temperature 
field in the solid is axisymmetric, and equation (5) can 
be rewritten as 

1 a W, 0 =-++z 
d’T(r, t) 

at a2 

(6) 

where the initial and boundary conditions are given 

T(r,O) = To $ = 0 
,=O 

as 

Then, equation (12) yields 

as 
aq ‘I=1 

= -s(5), 5 > 0. 

By employing the Laplace transform of 8 
respect to <, 

and the initial conditions (1 l), equations ( 
can be rewritten as 

. . .- _-- 

(13) 

(14) 

I(?, 5) with 

(15) 

0) and (14) 

ii”w/, 3) 1 iiwl,s) 
a+ +i af7 

~ -(s+Es’)&,s) = 0 

(16) 

as” 
aq q=l 

= -S(s) 

where g”(s) is the Laplace transform of g(g) 

(17) 

EVALUATION OF THE TEMPERATURE FIELD 

In this section, equations (16) and (17) are solved. 
Then, an analytical expression of the inverse Laplace 
transform of !?(Q s) is obtained. 

Equation (16) is a Bessel-type equation and its aen- 
era1 solution can be expressed as [14] 

t > 0. (8) where c,(s) and c&r) are arbitrary functions of s. Since 
the temperature field T(r, t) for r -+ + co must be equal . 

By introducing the dimensionless radius 1 = r/r,, the 
dimensionless time 5 = cd/r;, the dimensionless par- 
ameter Z = at/r;, and the dimensionless temperature 

to its initial value To for every time t > 0, both 9(~, 5) 
and its Laplace transform g(q,.r) must tend to zero 
for q + + OZ. Therefore, by recalling the asymptotic 
properties of Bessel functions [ 141 

WI, 5) = k 
W, t) - To 

40r0 
(9) 

equations (6)-(g) can be expressed in a dimensionless 
form, i.e. 

(10) 

lim 1,(r) = +rx, (19) Z-+X 

lim K,(z) = 0 l-+X (20) 

where z is a complex variable, and by employing equa- 
tion (18)) it can be concluded that c,(s) must be iden- 
tically zero. On the other hand, c&r) can be determined 
by employing equation (17). In fact, on account of 
the identity [ 141 
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equations (17) and (18) yield 

C?(S) = ~ 
g‘(s) 

K, (j(s+ W)) J(s+E.?y (22) 

Therefore. the solution of equations (16) and ( 17) is 
given by 

Lb/. s) = g(s) 
K,(qj(s+Ss’)) 

K, (j(s+Z.s’)) J(s+Es’) 

Let function f(q, t) be defined as 

fq, 5) = L- ’ 
K,,(~/j(s+E.s’)) . 

K, (~‘(.s+Ss*)) J(s+~) i 

(23) 

(24) 

where ,!-’ is the inverse Laplace transform operator. 
By definition, f(q, 5) does not depend on the time- 
evolution of the heat flux prescribed at Y = rl,. On 
account of the convolution theorem for Laplace trans- 
forms [15], equations (23) and (24) yield 

S(a,;) = 
I 

‘f(qJ)g(<-i)dl. (25) 
0 

Moreover, let function a(q, 5) be defined as 

(26) 

As a consequence of the translation property of the 
inverse Laplace transform [ 151, equations (24) and 
(26) yield 

f(rl* 5) = H(5 - (9 - l)JW(?. 5 - (rl- 1 )J% 

(27) 

where H is Heaviside’s unit step function. 
The right-hand side of equation (26) can be evaluated 
by the inversion formula for Laplace transforms 

e~c Ko(~j(s+~sL))e'~ “‘\’ dJ 

K, (&+3?))&s+&.s’) 

(28) 

where y is a real number greater than the real part of 
any singularity of the integrand [ 151. The evaluation 
of the integral at the right-hand side of equation (28) 
is performed in the Appendix by a contour integration 
which employs the closed path represented in Fig. I 
As a consequence of the contour integration. equation 
(28) can be written as 

a(?. 5) = 

y- iR 

Fig. 1, Closed path employed in the evaluation of a(~. 5). 

+ I + ’ 1, (P(Y)VG(P(Y~) +K, (P(Y))&(P(Y)v) 
I ‘B P(Y)[~‘~ (P(Y))’ +KI bW)‘l 

Xe-“[“‘“-~““=:l dj, (29) 

where function p(r) is defined as 

p(.v) = J(.r l -3.Il). (30) 

On account of equations (25), (27) and (29). 3(~, c) is 
given by 

9(+ 5) = 

1 ’ e J, (P(Y)) ~“bw~~~ - y, W’))J”(P(Yh) 
-I -- 77 I, P(Y)[J, (PWY + y1 (P(.Y))zl 

x KY, v. 5) 4, 

+ 
I 

+ ’ 1, MY)VG,(P(Y)V) +K, (PO))A,(P(.V)~) 
19 P(?‘)[~‘~I WV))’ +K, (P(.v))~I 

x NV. I> 5) dvv (31) 

where function $(r, ‘I, 5) is defined as 

$(.r. PI, i) 

= H(&(q-l)Jz)e-‘- 
I 

eJLg(l) dl. (32) 
0 

For every time-evolution of the heat flux at Y = Y,,, i.e. 
for every function 4(l). equations (13). (31) and (32) 
allow the determination of the dimensionless tem- 
perature field within the solid. 
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As a consequence of equations (31) and (32), the 2(a), while x(&j) = (5 - &,)/(ll - &,) for the triangular 
dimensionless temperature 9 is zero for every value of wave pulse represented in Fig. 2(b). On account of 
4 such that q > 1+5/,/E, i.e. the temperature equals equations (13) and (33), function g(t) is given by 
the initial value r, at every position r such that 
r > r. + t,/(+). This result is in agreement with the s(5) = Ml- 50) -H(5 - E,)ldO 
physical interpretation of ,/(c+) as the speed of 
propagation of thermal signals. +BX(~)$[H(r--e,)-H(~-~,)l (34) 

PROPAGATION OF SQUARE WAVE AND where function (p(l) is defined as 
TRIANGULAR WAVE THERMAL SIGNALS 

In this section, equations (13), (31) and (32) are dx(5) 
(P(5) =x(C)+=-. (35) 

employed in the case the heat flux at r = r,, is nonzero 
only for a finite time interval and varies either as 
square wave pulse or as a triangular wave pulse. As is well known [15], the derivative of Heaviside’s 

If the heat flux at r = r,, behaves as a pulse, function unit step function His Dirac’s delta distribution 6. so 

4(t) can be expressed as that equation (34) can be rewritten as 

4(5) = [H(5-r,)-H(5-5,)1x(5) (33) s(r) = [H(5-50)-H(r-5,)1~(5) 
where &, and 5, are two positive real constants such +~~(5)[6(~-50)-6(5-5,)1. (36) 
that the pulse starts when t = rit;,/cr and ends when 
t = rtt,/a. Function ~(5) is arbitrary; in particular, On account of equations (32) and (36), $(r, q. 5) can 
~(5) = 1 for the square wave pulse represented in Fig. be expressed as 

1 

0.8 

0.6 

0.4 

0.2 

0.8 

d 
0.6 

r T 

Fig. 2. Plot of C$ vs 4 for a square wave pulse (a) and for a triangular wave pulse (b). 
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vxl~,f/,i’) = H(i’&:,,-(‘I-I)JZ)c ’ 

X [~X(~,,)e’~‘l+ll”’ “‘:s” q(j.)dj.] 

-H(<-,, -(‘j-l)\.E)e ‘L 

X [Zx(<,)e’-I+ i’ “I ““e”q(jL)dj. 1 (37) 

If the heat tlux at I’ = I’,, behaves ;1s ;t syuat~ wave 
pulse. i.e. if x(6) = 1. equations (35) and (37) yield 

$(.r.r/,:) = H(;-‘Z,,--(r/~l),~Z) 

X 
I 

e 110 I,,3 I,~ 
Ee ‘1. v+ ~~ ~~ _-- ~~~ 

, 

1‘ ! 
(38) 

On the other hand. if the heat flux at r = I’,, behaves as 
a triangular wave pulse. i.e. ifx(<) = (&<,,)/(;, -;,,). 
equations (35) and (37) yield 

$(.r.t7.i) = H(<-,,,-(PJ~I),.,E) 

x (~+5~ij,,~(fI--!l_t_,z)1,- I 

I (i’, - <,,) 1.: 
e I,,, 11,: 

Ej,- I 

(39) 

The dimensionless temperature field can be evaluated 
in the case of a heat flux pulse with the shape of either 
a square wave or a triangular wave by employing 
equations (30). (31) and (38) or equations (30). (31) 
and (39), respectively. 
In the case of parabolic heat conduction Z is zero. so 
that equation (38) can be rewritten as 

while equation (39) can be rewritten as 

H(‘_-5 )(t~il,,)j~-l+e “_--‘I’ 
b 0 

(i’, -&I).? 

-H(;-<,I 

X 
(G<,,)_I-I-[(<, -<,l)j,- l]e-“; mZ~I 

(i, -5,,).r’ 
(41) 

In the case E = 0. equation (30) yields p(r) = V/~,. 
Therefore, by employing equations (30), (3 I ) and (40) 
or equations (30), (3 I ) and (4 I ). the dimensionless tem- 

perature field can be evaluated for parabolic heat con- 
duction in the case of a heat flux pulse with the shape 
of 3 square wave or of a triangular wave. respectively. 

In Carslaw and Jaeger [l6]. the parabolic and non- 
stationary heat conduction in the region Y > r,, with a 
prescribed constant and uniform heat flux at the sur- 
face I’ = T,) has been studied. The analytical expression 
of the temperature field obtained in [I 61 must coincide. 
in the limit of a vanishing thermal relaxation time. 
with the solution of the hyperbolic heat conduction 
equation obtained in this paper in the case of a square 
wave pulse with <,, -0 and 5, + +rr~. Indeed. by 
takmg the hmtts &---t 0 and <, + + ‘~8. equation 
(40) yields 

By substituting equation (42) in equation (31) and by 
employing the equation ()(,I‘) = V’j‘, one obtains 

{JO/. <) = ; H(,‘) 

x ‘?. ’ J, (\/.l,) Yo(rl\lJ’)- Y, (y?.)J,,(‘l\il.) 

J f/ J, (,~.lY + Y, (J.‘y 

I-_c ‘- 
x ~~ d.1,. >.’ 2 (43) 

It is easily proved that equation (43) can be rewritten 
3, 

where u = V r. Equations (9) and (44) yield the same 
temperature field as that obtained in Carslaw and 
Jaeger [I61 in the case of constant and uniform heat 
flux at I. = Y,,. 

In Figs. 3 IO, plots of the dimensionless tem- 
perature 9 vs the dimensionless time < for r~ = I and 
r/ = IO and for 3 = I and Z = 8. either in the case of 
a square wave pulse or in the case of a triangular wave 
pulse are reported. These plots show that hyperbolic 
heat conduction produces discontinuous variations of 
temperature with time which are absent if parabolic 
heat conduction is considered. This feature has been 
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1 

9 

0.8 

0.6 

1 

\ 

SQUARE WAVE 

77=1 

40 = 5 
<I= 10 
s” = 1 

Fig. 3. Plots of 9 vs 5 for n = 1 for hyperbolic conduction with E = I (solid line) and for parabolic 
conduction (dashed line) in the case of a square wave pulse. 

pointed out in other papers on thermal waves dealing heat conduction. Another relevant feature of hyper- 
with boundary conditions of prescribed wall heat bolic heat conduction is shown in Figs. 4 and 8 : after 
fluxes which vary discontinuously with time [9-121. the heat flux is switched off, at r = r. the temperature 
Moreover, comparisons between Figs. 3 and 5, falls below (if q. > 0) or jumps above (if q. < 0) its 
between Figs. 4 and 6, between Figs. I and 9 or initial value T,. If hyperbolic heat conduction were a 
between Figs. 8 and 10 show that, at the position theory based on the local equilibrium hypothesis as 
Y = IOr,, a time delay in the arrival of the thermal parabolic heat conduction is, this behaviour would 
signal due to the finite speed of propagation is present : represent a violation of Clausius’ statement of the 
such a time delay is absent in the case of parabolic second law. Indeed, it has been pointed out in the 

SQUARE WAVE 

7’1 

to=5 
41’ 10 
s”= 8 

4 6 

8 5 lo l2 l4 

Fig. 4. Plots of 9 vs 5 for n = 1 for hyperbolic conduction with _ ‘= = 8 (solid line) and for parabolic 
conduction (dashed line) in the case of a square wave pulse. 
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0.04 

0.03 

9 

0.02 

0.01 

0 

A. BARLETTA 

SQUARE WAVE 

77 = 10 
Co’5 
&= 10 
s” = 1 

15 20 25 30 35 

5 

Fig. 5. Plots of ,Y vs : for 4 = IO for hyperbolic conduction with g = 1 (solid line) and for parabolic 
conduction (dashed line) in the case of a square wave pulse. 

literature that hyperbolic heat conduction is in con- 
trast with the local equilibrium hypothesis [2], so that 
no violation of the principles of thermodynamics 
occurs. The undercooling/overheating of the solid 
material after the switching off of the heat flux is 
present also for r > r,, but becomes less relevant as r 
increases and at a sufficient distance from the surface 
r = rg this effect disappears. In fact. for r = lOr,, Figs. 
6 and IO show that no undercoolingjoverheating 
occurs. Moreover, Figs. 3. 5, 7 and 9 shows that the 
undercooling/overheating effect does not occur for 
low values of Z:, as for instance Z = I, 

CONCLUSIONS 

Hyperbolic heat conduction in an infinite solid med- 
ium internally bounded by a cylindrical surface has 
been analysed. On this surface a uniform and time- 
varying heat flux has been prescribed. It has been 
assumed that, in the initial state, the solid has a steady 
and uniform temperature distribution. The heat con- 
duction equation together with its boundary and 
initial conditions have been written in a dimensionless 
form. By employing the Laplace transform technique. 
an analytical solution has been found for an arbitrary 

Fig. 6. Plots of 9 vs t for q = 10 for hyperbolic conduction with S = 8 (solid line) and for parabolic 
conduction (dashed line) in the case of a square wave pulse. 
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1.2 

1 

0.8 

9 

0.6 

0.4 

0.2 

0 

TRIANGULAR WAVE 

rl =l 

To = 5 

cl= 10 
E”= 1 

4 6 
l2 l4 

Fig. 7. Plots of 9 vs 5 for q = 1 for hyperbolic conduction with E = 1 (solid line) and for parabolic 
conduction (dashed line) in the case of a triangular wave pulse. 

time variation of the heat flux at r = r,. In the case of 
a heat flux which behaves like a pulse, plots of the 
dimensionless temperature 9 vs the dimensionless time 
5 have been obtained for a square wave pulse and 
for a triangular wave pulse. These plots reveal two 
important features of hyperbolic heat conduction 
which are not presented by parabolic heat condition : 
(a) both for a square wave pulse and for a triangular 
wave pulse, the discontinuities in the time-variation 
of the heat flux produce discontinuities in the time- 
variation of the temperature field ; (b) after the swit- 
ching-off of the heat flux, for a sufficiently high value 
of the thermal relaxation time, both for a square wave 
pulse and for a triangular wave pulse, the temperature 

at r = r,, falls below (if q0 > 0) or jumps above (if 
q0 < 0) its initial value. 

Feature (b) is not in contrast with the principles of 
thermodynamics, but merely reveals a conflict 
between the theory of hyperbolic heat conduction and 
the hypothesis of local equilibrium. Indeed, among 
the cases which have been considered in the plots, 
this apparent violation of Clausius’ statement of the 
second law occurs only when the thermal relaxation 
time is greater than the duration of the pulse, i.e. in 
highly non-stationary cases. 
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2 

1.5 

9 

1 

0.5 

go=5 

&= 10 

TRIANGULAR WAVE 

V=l 

= = 8 

4 6 
* 55 lo l2 I4 

Fig. 8. Plots of 9 vs 5 for 1 = 1 for hyperbolic conduction with B = 8 (solid line) and for parabolic 
conduction (dashed line) in the case of a triangular wave pulse. 
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TRIANGULAR WAVE 

r;l =lO 

60’5 

g,=10 

Fig. 9. Plots of B vs < for 9 = IO for hyperbolic conduction with E = 1 (solid line) and for parabolic 
conduction (dashed line) in the case of a triangular wave pulse. 

TRIANGUL.AR WAVE 

77 = 10 

To = 5 

,$=I0 

2 = 8 

30 32 34 36 38 40 

5 
Fig. IO. Plots of :J VI i for r7 = IO for hyperbohc conduction with E = 8 (solid line) and for parabolic 

conduction (dashed fine) in the case of a triangular wave pulse. 
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APPENDIX 

Function a(q. 5) can be evaluated by employing the inver- 
sion formula (28) and the closed contour Z represented in 
Fig. 1. The integrand which appears in equation (28) has 
two branch points : s = 0 and s = - 1 /E, so that a branch 
cut is given by Im(s) = 0 and Re(s) < 0. Equation (28) can 
be rewritten as 

1 
a(n. 5) = 1 lim lim lim 2*,,s-+ r ‘,‘01141 

x 
ii 

e”d(q. s) ds- 
j 

e”ci(q. s) ds 
I r, 

_ 
j 

e”ri(tl. s) ds- 
j 

e’<d(q, s) ds 
‘., r, 

_ s e"d(q. s) ds- 
j 

e’;a‘(q. .s) ds 
AB cn 

_ 
j 

e’ic(rJ.s) ds- 
EF j 

oHe“d(q,s)ds (Al) 1 
where 

d(rr. s) = 
K,(~J(s+Zs’))e”l~“‘~‘” 

K, (J(s+Zs2)) J(s+Es’) 
(A3 

It is well known that there is no zero of function K, [17], so 
that there is no pole of @n, s) within the region bounded by 
X,. Therefore, on account of the residue theorem [15]. the 
contour integral on Z which appears in equation (A3) is zero. 
By employing the asymptotic expression of K,. which holds 
for large values of its argument 1141, 

(A3) 

it is easily proved that, in equation (Al), the integral on 
the semicircular path IR vanishes in the limit R + + T;C. 
Moreover. on account of the expressions of K0 and K, for 
small values of their arguments [14], 

K,(Z) L -In f 
0 

(A4) 

K, (2) I;ln i 
0 

(A5) 

it can be easily verified that. in equation (Al), the integrals 
on the circular paths I,, and Ipi vanish in the limits of R, + 
0 and E? -+ 0. respectively. 

As a consequence of equation (A2). one obtains 

e”‘d(r~, s) ds + 
j 

e’:d(q, s) ds 
on 1 

=kRe 
is 

1’ &(qp(y)e’“)e-‘(‘+‘q I)x;zldv (A6) 

I ‘E iK, (P(Y) e’“)p(.v) -1 

By employing the identity 1181 

K,(e’“z) = (- l)“K,,(=) ~ irtl,,(:) (A7) 

equation (A6) can be rewritten as 

~ k ,“m, ?% 

X l j e%(q, s) ds+ e”d(n. s) ds 
AB j GH I 

+’ r,(~(r))&(&r)rl)+K, (p(.r))l,(p(r)rI) = 
j - I ‘2 P(.N[~~L (P(Y))’ +K,(p(r.))‘l 

xe-‘[‘+‘“-‘L~~ldy~ (A8) 
Moreover. by employing equation (A?). one obtains 

On account of the identity [I 81 

K (e”“:) =~(-~)“+‘[J,(z)-~Y,~(z)] n 

equation (A9) can be rewritten as 

- L lim lim 2ni+.,-Oi,-0 

(AIO) 

As a consequence of equations (Al), (A8) and (Al I), equa- 
tion (29) holds. 


